

How we found 5 0days in WordPress

Simon Scannell, RIPS Technologies

www.ripstech.com

18.11.2019

http://www.ripstech.com/

1. Introduction 2

2. Methodology 3
2.1 Traditional Code Audit Approaches 3
2.2 Drawbacks of Traditional Approaches 3
2.3 Case Study 4

2.3.1 Limited Local File Inclusion 5
2.3.2 Breaking the Limitation 5

2.4 Finding an Efficient Methodology 7
2.4.1 Step #1 - Component Identification 7
2.4.2 Step #2 - Feature Breakdown 8
2.4.3 Step #3 - Feature Vulnerabilities 9
2.4.4 Step #4 - Vulnerability Chains 10

3. Vulnerability Analysis 12
3.1 CVE-2018-12895: Authenticated File Deletion 12

3.1.1 Abstracting the Media File Functionality 12
3.1.2 Background - Understanding Post Meta Entries 13
3.1.3 Insufficient Validation in Post Meta Component 14
3.1.4 Impact and Limitations 15

3.2 CVE-2019-8943: Authenticated Path Traversal and LFI 16
3.2.1 Abstracting the Image Cropping Functionality 16
3.2.2 Path Traversal in Image Editing 17
3.2.3 Impact and Limitations 19

3.3 CVE-2019-9787: Unauthenticated CSRF to XSS 20
3.3.1 Abstracting the Comment Functionality 20
3.3.2 Sanitization Bypass in SEO Optimization 21
3.3.3 Limitations and Bug Chaining 22
3.3.4 CSRF Vulnerability in Comments 22
3.3.5 Impact and Limitations 24

4. Exploitation Chain 25
4.1 Step #1 - Plugin Vulnerabilities 25
4.2 Step #2 - Attacking WordPress Core via CSRF 25
4.3 Step #3 - Exploiting Authenticated Vulnerabilities 26
4.4 Bonus: Wormable Stored XSS on WordPress.org 27
4.5 Putting it all together 28

Summary 30

References 31

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 1

http://www.ripstech.com/

1. Introduction

WordPress is a highly popular content management system used by over 34% of all
websites on the internet. It’s ease of use, great compatibility with a variety of servers
and its huge list of free and powerful plugins (over 50.000) make WordPress the first
choice for quickly and easily setting up a website without any technical knowledge or
excessive budget. WordPress can be customized and optimized to a point that even
governments and billion-dollar corporations use this blogging CMS to manage their
websites. From america.gov to the swedish government, and from Microsoft to
Facebook: they all use WordPress.

The popularity of this CMS makes it an attractive target for cybercriminals seeking to
find previously unknown, and hence unpatched, vulnerabilities (0days) in order to take
over as many websites as possible. Also nation states and other sophisticated hacking
groups are interested in backdooring high value targets. We observed that the high
interest in WordPress’ security by different groups lead to many vulnerabilities being
discovered and patched in the past. Additionally, bug bounty programs and 0day
acquisition platforms attract a vast amount of bounty hunters that slowly but surely
squeezed easy to find vulnerabilities out of the WordPress core. Hence, the
well-reviewed code of the most popular web application is a great challenge but also a
good candidate to experiment with different approaches of code auditing.

When we started our vulnerability research on the WordPress core code, we quickly
realized that in order to find critical vulnerabilities one must move away from the
traditional paradigm of how to find simple vulnerabilities in web applications and come
up with more effective approaches and methodologies to source code auditing. This
paper documents our approach of separating source code into components and
combining several low-impact bugs into powerful Privilege Escalation and Remote
Code Execution exploits. As a result, we found and combined five vulnerabilities into a
powerful exploit chain that in the end allowed unauthenticated attackers to take over
any high value target running WordPress. All issues have been responsibly disclosed to
the WordPress security team and a patch is available. We believe that our
documentation of vulnerability discovery does not only help other researchers to
manifest their audit methodology but also helps developers to better understand the
mindset of attackers and to sharpen their mindset for secure coding.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 2

http://www.ripstech.com/

2. Methodology

This chapter introduces the methodology that we have used to audit the WordPress
core. We will first look back on the most common approach to audit source code and
point out drawbacks when analyzing well-reviewed applications such as WordPress.
We will then present a case study and introduce a step-by-step guide to follow our
methodology used.

2.1 Traditional Code Audit Approaches

The easiest way of thinking about vulnerabilities in web applications is in terms of an
user input → sink relationship. A sink is simply a dangerous feature that may allow to
execute security sensitive operations when untrusted user input is passed to it without
being properly sanitized beforehand. For example, a database, a file write or an
executed system command poses such a sensitive feature that could be abused by
attackers if they manage to influence the feature with user-supplied data.

A very simple example of such a vulnerability could look like the following:

To find such bugs, researchers traditionally follow the trace of every input that can be
controlled linearly through the code and verify if the controlled data is passed insecurely
to a sensitive sink. Alternatively, a list of sensitive sinks is collected and the trace of
data flow is followed backwards-directed. Since the data flow must be followed across
function and file boundaries, static code analysis tools can help to automate this
time-intense process.

2.2 Drawbacks of Traditional Approaches

Due to the high value of 0days in wide-spread web applications such as WordPress
though, many skilled hackers and researchers already took on the challenge of tracing
every single controllable user input through hundreds of thousands of lines of code to
find vulnerabilities that follow the traditional input → sink pattern. This slowly but surely
squeezed easy to find vulnerabilities out of highly popular applications over time.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 3

https://www.ripstech.com/product/approach/
http://www.ripstech.com/

As a consequence, the vulnerabilities that are still being discovered today are
increasingly complex. New vulnerabilities that are found in highly popular source codes
changed from being first-order vulnerabilities to complex exploit chains that are second,
third - or even more - order vulnerabilities. This means that more and more steps are
involved before an input actually hits a sink. More importantly, between each step there
might be a condition that must be fulfilled before you can move on to the next step.

When we scanned the WordPress core with our static code analysis solution RIPS we
mainly discovered seemingly low-impact vulnerabilities that follow the input → sink
pattern. Often, these vulnerabilities were considered to be non-exploitable by a
limitation imposed by the application. Many bugs look like “almost” vulnerabilities but
cyber criminals, bug bounty and 0day acquisition programs are only interested in fully
exploitable issues. So these low-impact bugs were probably left behind unreported by
other researchers.

We learned that in order to come up with new critical security issues in well-reviewed
code, the most promising approach is to combine several low-impact flaws into
high-impact exploit chains. The difficulty in combining multiple low-impact vulnerabilities
lies in establishing a connection between those issues. The different issues that could
be chained together might be located in entirely different functionalities of a web
application and have no obvious connection to each other within the source code itself.

This lack of this obvious connection is the reason why the traditional approach
overlooks a new exploitable vulnerability in the core. When a researcher only tries to
trace user-controlled data through the source code of an application to see if it is
directly passed to a critical sensitive sink, he will face limitations imposed by the
application that he audits. Since these limitations often cannot be bypassed directly,
researchers give up and deem the traced path they were following as non-exploitable.
However, the limitations can often be broken by abusing a bug at an entirely different
location in the source code.

2.3 Case Study

Let’s have a look at a classical real-world example of such a vulnerability that we
discovered in the WordPress core. We chained two bugs/features that have no
connection to each other within the source code. But each of those bugs would have
been considered as not exploitable when looking at them separately.

Please note that the following example requires administrator privileges for exploitation
and poses as a technical example. Although it is possible by default for administrators

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 4

http://www.ripstech.com/

to execute arbitrary PHP code by uploading new plugins and themes, these features
could also be disabled on a properly hardened WordPress installation that followed the
official hardening guide of WordPress. We will look at other unauthenticated
vulnerabilities in Section 3.

2.3.1 Limited Local File Inclusion

Our static code analysis tool reported a second-order Local File Inclusion (LFI)
vulnerability in the theme component of the WordPress core (RIPS vulnerability report).
It allows an attacker to include() and execute any file, independent of its extension, but
only from within the currently active theme directory. A theme in WordPress is
supposedly an existing directory that contains template files, as well as stylesheet /
JavaScript files. Hence, this LFI vulnerability is limited and cannot be exploited directly.

WordPress securely ensures that the second-order user input that is passed to the
include() call is the name of a file that actually exists within the currently active theme
directory. It is impossible to deploy a Path Traversal attack to bypass this limitation. It is
also not possible, at least on a properly hardened WordPress installation, to upload files
to this theme directory or to modify the content of files within the theme directory (e.g.
change the contents of .css files). This means that although it is possible to include any
file from within the active theme directory, it is not possible to include malicious PHP
code. As a result, this issue might be considered as a valid feature rather than a
security bug and is not patched by WordPress at the time of writing.

But what if we can find another vulnerability in an independent component of
WordPress that would allow us to sneak PHP code into that directory?

2.3.2 Breaking the Limitation

Since WordPress ensures that an included page template must be actually located in
the currently active theme directory, we knew that the only way to exploit the
vulnerability was to somehow modify an existing file within the theme directory, or to
upload or move a file that contains our malicious PHP code to that directory.

In order to effectively find such weakness in the WordPress code that would allow us to
modify files, we decided to only focus on a few components in the WordPress core that
would likely contain such a weakness. We cut down our research effort to the plugin
update component and the media file upload component because some file processing
needs to happen there.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 5

https://wordpress.org/support/article/hardening-wordpress/
https://demo.ripstech.com/projects/wordpress_5.0.0/
http://www.ripstech.com/

However, we quickly realized that looking at the file upload functionality of WordPress
without a structured approach would not yield any results. This is because uploaded
files and their filenames are sanitized and accessed by various functions and various
different components of WordPress play a role in the file upload process. Capabilities
play a role in which files can be uploaded, certain file types are handled differently,
internal references to the file are stored in the database and so on.

For this reason we broke down the upload functionality for each file type into a simple,
linear process. For example, when a .txt file is uploaded to a WordPress site,
WordPress will 1) sanitize the file name, then 2) fetch the upload_path setting from the
database which determines the directory that the .txt file will be moved to, and finally, 3)
move the file to the destination directory.

With this abstraction of the file upload process for a .txt file, we quickly discovered a
way to exploit the limited LFI vulnerability. If an attacker could overwrite the
upload_path setting, he could point it to the directory of the currently active theme. An
uploaded .txt file would then simply be moved to the theme directory. It is indeed
possible to make the upload_path setting point to any directory.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 6

http://www.ripstech.com/

This allowed us to change the upload_path to make it point to the same directory where
the currently active theme is located. For example if WordPress’ default twentyninteen
theme was used, one would have to simply set the upload_path to
wp-content/themes/twentyninteen. By abusing this bug, it is possible to break the
limitation of not being able to upload files to the currently active theme directory. By
combining both vulnerabilities, an attacker can execute arbitrary PHP code.

2.4 Finding an Efficient Methodology

The case described above was a simple example of a vulnerability that can only be
exploited when a researcher establishes a connection between two bugs (or features)
that are located in different locations of the source code.

Here, the traditional approach of simply following user input through the source code of
WordPress until it reaches a sink was not sufficient. A researcher who would have only
followed the user input that is passed to include() in the theme component would have
found a non-exploitable File Inclusion vulnerability but not notice the connection to the
option component of WordPress, as there is no reference to it in the code. While this
works well for developers who only need to patch potentially vulnerable code, a
researcher needs to find a way of exploitation.

Our goal was to audit the source code in a more structured approach and with a
methodology in mind that helps us to connect multiple low-impact vulnerabilities on a
logical level. We could then chain separate bugs into more powerful high-impact
vulnerabilities. For this purpose, we structured our audit in four steps.

2.4.1 Step #1 - Component Identification

Since the connections between low-impact bugs often exist on a logical and
architectural level of the web application, it makes sense to break down the web
application into functional components that each have a unique purpose contributing to
the application instead of simply looking at a web application as a heap of functions and
classes.

A component could, for example, be the theme component of WordPress. The theme
component holds all functionality and logic that is required by a WordPress theme.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 7

http://www.ripstech.com/

Another component might be the file management component of WordPress which
handles all file operations.

Another way of thinking about these components are black boxes. A component
receives data, processes it and passes it on. For example, the theme component
receives data, such as the type of a blog post that should be displayed and the data
that should be inserted into a template.

What exactly a component is and what the purpose of the abstraction is will become
clear when a practical example is given in the next step.

2.4.2 Step #2 - Feature Breakdown

When researchers audit a specific functionality for weaknesses, for example how a
comment is created on a site, it makes sense to break down the functionality into a
series of the involved components.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 8

http://www.ripstech.com/

For example, when a comment is added to a blog post of a WordPress site, the user
input is passed through multiple components. The comment is 1) first sanitized against
XSS attacks (XSS-sanitization component), 2) then optimized for SEO purposes
(optimization component), 3) then stored in the database (database component), and
eventually when a user wants to view the comment, 4) fetched from the database and
modified again (optimization component), before it is finally 5) embedded into the
resulting HTML page (theme component). As a results, we can map the comment
feature to a series of five different components of the WordPress core.

2.4.3 Step #3 - Feature Vulnerabilities

Once we have broken down a functionality into such a series of components we can
ask ourselves for each involved component: “What is the purpose of this component in
the functionality and what could go wrong for that functionality?”.

For example, in step #2 when we analyzed the example of how a comment is created in
WordPress, there is a SEO component that modifies the HTML markup of the comment
string after is has been sanitized. The answer to the question “What is the purpose of
this component in the functionality and what could go wrong?” is that the component is
designed to parse, modify and optimize the HTML markup of the comment string for
SEO purposes. A Cross-Site Scripting vulnerability could occur if the parsing and
modification process can be broken. We will show more practical examples in Section 3
that demonstrate how we approached finding vulnerabilities in single components.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 9

http://www.ripstech.com/

A researcher can effectively search or scan for flaws in single components when he
knows exactly what to look for. Searching for flaws in single components with a lot of
context in mind (the context depends on the purpose of the component within the
functionality), a researcher can notice low-impact issues that would otherwise go
unnoticed or even get ignored.

2.4.4 Step #4 - Vulnerability Chains

Following the previous steps, a researcher first has to

1. break the web application down into (security relevant) components,
2. abstract functionalities into a series of the involved components and understand

how these components interact with each other,
3. and identify one or more context-dependent weaknesses in one or more

components within a series of components in a functionality.

He can then find out how the discovered weaknesses relate to the rest of the
functionality and how they can be combined to achieve an exploitable security issue
with high impact. In this last step he will likely encounter limitations and challenges that
prevent exploitation. Often the reason why these weaknesses are still present in the
source code is that some limitations prevent exploitation.

However, now that the researcher understands the limitations and what the solution
would be to break the limitations, he can begin auditing the source code with the goal of
finding another bug to break it. Since limitations are often times very specific, the
likelihood of such a bug still existing in the application is very high.

To pick up the example with the exploitation of the limited LFI again, all a researcher
had to do was find a bug that allows a user to upload any file to a certain directory.
Since such a bug does not lead to Remote Code Execution directly, we assumed that
other researchers would have left it out.

In order to effectively find a bug that breaks his limitations he can cut the research effort
down to a few components that could likely contain such an issue. He can then look at
the functionalities present within that component and audit them with the same
approach that lead to the first bug being discovered.

When we looked at our example of an authenticated Remote Code Execution
vulnerability earlier (Section 2.3), we did exactly that. Recall that we discovered a LFI
vulnerability that allowed to include arbitrary files from a certain directory, however that

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 10

http://www.ripstech.com/

directory was not accessible and no file that contained PHP code could be placed into
it. The only way to break the limitation was to upload or move a user controlled file to
this certain directory with another feature. Knowing this, we cut the research effort down
to the plugin update and media file component of WordPress. We then used the same
steps used to find the original bug, meaning breaking each functionality down into the
series of involved components, in order to find a bug that allowed us to upload a file to a
certain directory and break the limitation for exploitation.

We will look at more complex examples in the next section.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 11

http://www.ripstech.com/

3. Vulnerability Analysis

In this section we demonstrate our approach to auditing the WordPress core by
breaking the source code down into components and building connections between
those components. We then analyze the real-world security vulnerabilities that we
detected by using our approach. Obviously not all parts of our audit process can be
mapped to a specific concept or fixed guideline that guarantees success for other code
bases but our presented methodology becomes evident. We further cover technical
details about WordPress internals. No prior WordPress knowledge is required. Each
breakdown will focus on specific bugs that we explored step-by-step in order to find a
connection and build a chain.

We first detected small bugs within the administration area of WordPress that we
managed to chain to an authenticated code execution vulnerability. However, the
vulnerability required administrator privileges. As a next step, we tried lowering the
privilege bar and looked for vulnerabilities requiring less privileges on a target site.
Finally, we managed to find an unauthenticated vulnerability that allowed us to take
over the session of high privileged users and exploit any of the discovered
authenticated Remote Code Execution vulnerabilities.

3.1 CVE-2018-12895: Authenticated File Deletion

We discovered our first critical vulnerability in the WordPress component that handles
uploaded media files. Everything that has to do with file uploads and file management is
prone to a series of vulnerability classes: File Writes, File Deletions and File
Manipulations to name a few. In this case we found a File Deletion vulnerability that
allows to delete arbitrary files from the file system.

The vulnerability can be triggered by an authenticated user with limited author
privileges. These users can only edit new blog posts but can not use security sensitive
features, for example, installing WordPress plugins. By using this vulnerability, an
author could gain administrator privileges or execute arbitrary code on the server.

3.1.1 Abstracting the Media File Functionality

When we audited the way media files are handled by WordPress, we abstracted the
functionality into a series of involved components.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 12

http://www.ripstech.com/

We started with the file upload. An uploaded file and its filename is first 1) sanitized by
the file sanitization component. It is then 2) moved to the upload directory by the file
management component. When this step succeeded, so called 3) Post Meta entries are
generated that store information about the just uploaded file in the database. This
information includes for example the filename of the file in the filesystem and the time of
the upload. The Post Meta component is later used again to determine the filename in
the filesystem for further file operations in the file management component.

We decided that we would have the highest chance of finding a vulnerability by looking
at the so called Post Meta component. Since Path Traversal attacks and all kinds of
tricks when it comes to File Upload vulnerabilities have long been known and are
prevented in WordPress, we assumed that the sanitization and file management
component is mostly secure. We decided that since the Post Meta component is unique
to WordPress and probably requires deep architectural knowledge about the CMS in
order to be exploited, auditing this component would most likely result in at least some
limited vulnerability that we could chain with another bug.

3.1.2 Background - Understanding Post Meta Entries

In order to understand the logical bug that we discovered within the Post Meta
component of WordPress, we will first need a bit of background knowledge on how Post
Meta entries are created and used by the WordPress core. When for example an image
is uploaded to a WordPress installation, it is first moved to the uploads directory
(wp-content/uploads). WordPress will also create an internal reference to this image in
the database in order to keep track of meta information such as the owner of the image
or the time of the upload. This meta information is stored as Post Meta entries in the
database. Each of these entries are key / value pairs that are assigned to a certain ID.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 13

http://www.ripstech.com/

A quick check of the WordPress database table wp_postmeta provides an overview of
what data is stored here. Apparently, sensitive strings such as file names and serialized
data can be found.

3.1.3 Insufficient Validation in Post Meta Component

After we abstracted the file upload into a series of components, we learned that when a
file is uploaded, its filename is stored in a Post Meta database entry. The issue with the
Post Meta entries prior to WordPress 4.9.9 and 5.0.1 is that it was possible to modify
any entries and set them to arbitrary values. When an image is updated (e.g. it’s
description is changed), the edit_post() function is called. This function directly operates
on the $_POST array.

As can be seen in the code above, it is possible to inject arbitrary Post Meta entries.
Since no check is made on which entries are modified, an attacker can, for example,
update the _wp_attached_file meta entry and set it to any value. This does not rename
the actual file on the filesystem in any way, it just changes the value in the database. As
a next step, we configured our static code analysis tool to automate the process of
finding security sensitive functions that operate with Post Meta data.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 14

http://www.ripstech.com/

As a result, we detected that the meta data is used when a file is deleted again. Since
WordPress trusts the value it receives from the Post Meta component, it will blindly
delete the file with the received name. This means an attacker can delete any file by
first updating the Post Meta entry of the _wp_attached_file entry and setting it to the
name of the file that he wants to delete. The attacker can then instruct WordPress to
delete any file on the file system (RIPS vulnerability report).

3.1.4 Impact and Limitations

An attacker can use this second-order file deletion vulnerability to delete the main
configuration file of WordPress: wp-config.php. Once this file is missing, WordPress is
tricked to believe that it has not yet been installed. As a result it will display the
WordPress installation routine to the website user. The attacker can then re-install
WordPress and is able to control the database connection settings which he can point
to his own remote database server. This way, he can load a new administrator account
into WordPress which enables to use administrator features. When this vulnerability is
exploited by a low-privileged author user the privileges are thus escalated. Further, the
attacker can control critical WordPress settings in the database that allow to execute
arbitrary PHP code.
The limitation of this vulnerability is that although the attacker gains full control over the
WordPress installation, he loses access to data stored in the database by deleting the
configuration file which contains the database credentials. This way, user accounts,
blog posts, pages, files and design configurations are lost and this will immediately
alarm administrators about the attack.
We decided to look for a more critical vulnerability that bases on the Post Meta issue
which would enable an attacker to install a backdoor without setting of any alarms.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 15

https://demo.ripstech.com/projects/wordpress_4.9.6
http://www.ripstech.com/

3.2 CVE-2019-8943: Authenticated Path Traversal and LFI

After we identified the previously described flaw we investigated further reports of our
static analysis tool that based on the usage of Post Meta data. This lead to the
discovery of another vulnerability. A Path Traversal vulnerability was detected within the
image editing component of WordPress. More precisely, it was hidden in the
functionality responsible for cropping an image that can be uploaded by a low-privileged
user. In order to exploit this vulnerability, we had to chain it with a Local File Inclusion
vulnerability. In the following, we will investigate both vulnerabilities in detail.

3.2.1 Abstracting the Image Cropping Functionality

RIPS discovered that the functionality which enables lower privileged users to crop
uploaded images also relies on Post Meta entries to actually load the images to crop
(RIPS vulnerability report). Hence, we abstracted the image cropping functionality to
gain an overview of what we had to do in order to exploit the Post Meta weakness.

We documented the following process. When an image is uploaded to a WordPress
site, it will be 1) moved to the uploads directory wp-content/uploads by the file
management component. WordPress then 2) creates an internal reference to the image
in the database in order to keep track of meta information such as the owner of the
image or the time of the upload (Post Meta information). When a lower privileged user
then wants to crop the image, he submits the ID of the image that he wants to edit.
WordPress then 3) pulls the corresponding _wp_attached_file Post Meta entry from the
database (Post Meta component) and passes it to the 4) image editing component. This
component finally 5) passes the resulting image to the file management component so
the new image is saved back to the filesystem.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 16

https://demo.ripstech.com/projects/wordpress_5.0.0
http://www.ripstech.com/

Since we could control which file WordPress would pass to the image editing
component, we decided to take a closer look at this component. We investigated if we
could somehow leverage our detected security flaw that allows us to pass any image to
the image editing component.

3.2.2 Path Traversal in Image Editing

The Path Traversal vulnerability is in the wp_crop_image() function which gets called
when a user crops an image. The function takes the ID of an image to crop
($attachment_id) and fetches the corresponding _wp_attached_file Post Meta entry
from the database. Note that due to the flaw in edit_post(), the return value $src_file of
get_post_meta() can be controlled by an attacker.

As a next step, WordPress ensures that the image actually exists and loads it.
WordPress has two ways of loading the given image.

1) The first is to simply look for the filename provided by the _wp_attached_file Post
Meta entry in the wp-content/uploads directory (line 2 of the next code snippet).

2) If that method fails, WordPress will try to download the image from it’s own

server as a fallback. To do so it will generate a download URL consisting of the
URL of the wp-content/uploads directory and the filename stored in the
_wp_attached_file Post Meta entry (line 6).

Let’s have a look at a concrete example: If the value stored in the _wp_attached_file
Post Meta entry was evil.jpg, then WordPress would first try to check if the file
wp-content/uploads/evil.jpg exists. If not, then it would try to download the file from the
following URL:

https://targetserver.com/wp-content/uploads/evil.jpg

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 17

http://www.ripstech.com/

The reason why WordPress is trying to download the image instead of looking for it
locally is that a plugin could generate the image on the fly when the URL is visited.

In the following the affected code is listed. Note that no sanitization whatsoever is
performed when building the filename and / or URL of the image. WordPress simply
concatenates the upload directory and the URL with the $src_file which can be
controlled by an attacker.

Once WordPress has successfully loaded a valid image via wp_get_image_editor(), it
will crop the image. The cropped image is then saved back to the filesystem (regardless
of whether it was downloaded or not). The resulting filename is going to be the $src_file
returned by get_post_meta() which is under control of the attacker. The only
modification made to the resulting file name string is that the basename of the file is
prepended by the string “cropped-” (line 4 of the next code snippet.) To follow the
example of our evil.jpg, the resulting filename would be cropped-evil.jpg.

WordPress then creates any directories in the resulting path that do not exist yet via
wp_mkdir_p() (line 6). The image is then finally written to the filesystem using the save()
method of the image editor object. The save() method also performs no Path Traversal
checks on the given file name.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 18

http://www.ripstech.com/

So far, we have discussed that it is possible to determine which file gets loaded into the
image editor, since no sanitization checks are performed. However, the image editor
will throw an exception if the file is not a valid image. The first assumption might be that
it is only possible to crop images outside the uploads directory then. However, the
circumstance that WordPress tries to download the image if it is not found leads to a
Path Traversal vulnerability.

The idea is to set _wp_attached_file to evil.jpg?shell.php, which would lead to a HTTP
request being made to the following URL:
https://targetserver.com/wp-content/uploads/evil.jpg?shell.php.

This request would return a valid image file, since everything after the ? character is
ignored in the HTTP context. The resulting filename would be
evil.jpg?cropped-shell.php.

However, although the save() method of the image editor does not check against Path
Traversal attacks, it will append the extension of the mime type of the image being
loaded to the resulting filename. In this case, the resulting filename would be
evil.jpg?cropped-shell.php.jpg. This renders the newly created file harmless again. But
if we are injecting path traversal sequences it is still possible to plant the resulting
image into any directory by using a payload such as evil.jpg?/../../evil.jpg.

3.2.3 Impact and Limitations

The very first example discussed in this paper (Section 2.3.1) showed how a limited LFI
vulnerability exists within the theme component of WordPress. The LFI was limited in
the sense that only files from a certain directory could be included and that it was not
possible to write files to that directory that an attacker could actually include.

The fact that we can now plant an image file into any directory enables an even lower
privileged attacker to exploit the otherwise limited LFI. The attacker can inject PHP
executable code within the EXIF meta data section of the image that will be planted into
the directory he can include from. By doing so, he can execute arbitrary PHP code on
the server. This vulnerability was nominated for a Pwnie Award for best server-side
bug.

Contrary to the previously analyzed file delete exploitation, this vulnerability has the
advantage of being stealthy and does not corrupt any data on the site. However, it still
requires the same user privileges as the first vulnerability. Hence our next step was to

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 19

https://pwnies.com/nominations/
http://www.ripstech.com/

look for a vulnerability that was unauthenticated or would let us exploit our so far
discovered vulnerabilities without authentication.

3.3 CVE-2019-9787: Unauthenticated CSRF to XSS

Since bugs that require no authentication in web applications have the highest impact,
we placed our focus on those functionalities that unauthenticated users have access to.
The most obvious feature was the comment functionality of WordPress.
Unauthenticated users can add comments to a blog post and even include some very
basic HTML tags and attributes within the comment string.

3.3.1 Abstracting the Comment Functionality

We began by breaking the comment functionality down into a series of components.
When a comment is created on a WordPress site, the user input is passed through
multiple components. It is 1) first sanitized against XSS attacks (XSS sanitization
component), 2) then optimized for SEO purposes (optimization component), 3) then
stored in the database (database component), and eventually when a user wants to
view the comment 4) fetched from the database and modified again (optimization
component), before it is finally 5) embedded into the resulting HTML page (theme
component).

By abstracting the comment functionality into such a series of components, we were
able to quickly determine which component we should spend our time trying to find
weaknesses in. Since we assumed that the sanitization component after all these years

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 20

http://www.ripstech.com/

of being audited was secure, we assumed that the easiest way to find a vulnerability
was to find a bug in one of the components that alter the comment string after it has
been sanitized. Since the comment is optimized for SEO purposes in the second step of
the comment creation functionality and is modified before being embedded into the
HTML markup in the fourth step, we decided to look at both these components. We
quickly realized that the fourth component, the one that modifies the comment before it
is being embedded into the HTML markup, did not modify the comment string strongly
enough for XSS flaws to occur. For this reason we decided to look for a weakness
within the SEO optimization component.

3.3.2 Sanitization Bypass in SEO Optimization

After WordPress sanitized a new comment it will modify <a> tags within the comment
string to optimize them for SEO purposes. This is done by parsing the attribute string
(e.g. href="#" title="some link" rel="nofollow") of the <a> tags into an associative array
(line 3004 of the following snippet). Here, the key is the name of an attribute and the
value the attribute value.

WordPress then checks if the rel attribute is set. If so, it is processed and the <a> tag is
put back together with the new rel attribute.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 21

http://www.ripstech.com/

The flaw occurs in the lines 3017 and 3018 of the above snippet, where the attribute
values are concatenated back together without being escaped.
An attacker can create a comment containing a crafted <a> tag and set for example the
title attribute of the anchor to title='XSS " onmouseover=alert(1) id=" '. This attribute is
valid HTML and would pass the sanitization step.

However, this only works because the crafted title tag uses single quotes. When the
attributes are put back together, the value of the title attribute is wrapped around in
double quotes (line 3018). This means an attacker can inject additional HTML attributes
by injecting an additional double quote that closes the title attribute.

Let’s have a look at the following example:
 would turn into
 after processing.
Since the comment has already been sanitized at this point, the injected onmouseover
event handler is stored in the database and does not get removed.

This bug allows us to inject arbitrary HTML attributes into the comment string. We only
needed to figure out how to trigger the bug.

3.3.3 Limitations and Bug Chaining

We had discovered a weakness in the SEO optimization component of WordPress that
was a part of the comment creation functionality. However, we realized that the parsing
error would only trigger if the rel attribute could be set in the HTML markup of the
comment. This was an issue, since the sanitization component of WordPress does not
actually allow the rel attribute to be set and removes it from the user supplied comment
string, meaning the bug discovered in the SEO optimization component can never be
abused. This was probably the reason it had never been reported in the first place.

The only way to exploit this weakness was to find another bug that would allow us to set
the rel tag. Our assumption was that we probably would need to find a bug in the same
functionality, which limited the components that we could audit for bugs to only a few.

We decided that the highest chance of success was to find a weakness in the rather
complex XSS sanitization component of WordPress. Since we did not need a full
bypass for the XSS filters of WordPress, just one that allowed us to inject a usually
harmless rel attribute we assumed that it was worth a try. Additionally, we knew exactly
what we were looking for. Researchers who did not specifically look for a bug that
allows to inject a rel attribute would probably not have noticed such a bug in the past.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 22

http://www.ripstech.com/

3.3.4 CSRF Vulnerability in Comments

When looking for a bypass in the comment sanitization process that allows to set the rel
attribute, we analyzed when and how the XSS filters for specific attributes are triggered.
We discovered that for specific comments, no filter for the rel attribute was invoked. We
could create a comment without invoking a filter that would remove the rel attribute from
a comment string via a CSRF vulnerability that abuses the trackback feature of
WordPress.

Moreover, WordPress performs no CSRF validation when a user posts a new comment.
This is because some WordPress features such as trackbacks and pingbacks would
break if there was any input validation. This means an attacker can create comments in
the name of administrative users of a WordPress blog via CSRF attacks. This can
become a security issue since administrators of a WordPress blog are allowed to use
arbitrary HTML tags in comments, even <script> tags. In theory, an attacker could
simply abuse the CSRF vulnerability to create a comment containing malicious
JavaScript code.

WordPress tries to solve this problem by generating an extra nonce for administrators in
the comment form. When the administrator submits a comment and supplies a valid
nonce, the comment is created without any sanitization. If the nonce is invalid, the
comment is still created but is sanitized.

The following code snippet shows how this is handled in the WordPress core:

The fact that no CSRF protection is implemented for the comment form has been
known since 2009. However, we discovered a logical flaw in the sanitization process for
administrators. As shown in the above code snippet, the comment is always sanitized
with wp_filter_kses(), unless the user creating the comment is an administrator with the
unfiltered_html capability. If that is the case and no valid nonce is supplied, the

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 23

http://www.ripstech.com/

comment is sanitized with wp_filter_post_kses() instead (line 3242 of the above code
snippet).

The difference between wp_filter_post_kses() and wp_filter_kses() lies in their
strictness. Both functions take in the unsanitized comment and leave only a selected list
of HTML tags and attributes in the string. Usually, comments are sanitized with
wp_filter_kses() which only allows very basic HTML tags and attributes, such as the
<a> tag in combination with the href attribute.

This allows an attacker to create comments that can contain much more HTML tags
and attributes than comments should usually be allowed to contain. Although
wp_filter_post_kses() is much more permissive, it still removes any HTML tags and
attributes that could lead to Cross-Site-Scripting vulnerabilities. However, the important
difference is that wp_filter_post_kses() allows rel tags to be set. As a result, we can
inject a rel attribute via a CSRF flaw.

3.3.5 Impact and Limitations

By combining the CSRF flaw that allows an attacker to set the rel attribute in a
comment string with the parsing flaw in the SEO optimization component that leads to
an arbitrary HTML attribute injection, an attacker can create and store a comment with
a XSS payload (persistent Cross-Site Scripting). The vulnerability requires that
comments are enabled on a target WordPress sites but these are enabled by default.

In order to escalate this to Remote Code Execution impact, he can abuse another flaw.
The page that displays the newly created comment is not protected by the
X-Frame-Options header. This means when an attacker can trick an administrator into
visiting a website that triggers the CSRF exploit, he can create a hidden iframe in the
background of the page to display the comment and immediately execute the
JavaScript code contained in it. The attacker can now execute arbitrary JavaScript code
on the target site with the session of the admin user.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 24

http://www.ripstech.com/

4. Exploitation Chain

So far we have analyzed four vulnerabilities that can lead to Remote Code Execution in
WordPress with default settings. We reported all vulnerabilities to the WordPress
security team responsibly and ensured a patch is available before disclosing the
technical details. A sophisticated attacker who would not have reported these issues
could have chained and use these bugs to target and take over any high value target
running WordPress though. In this section we will explore the steps that a motivated
attacker would take to attack a specific WordPress instance.

4.1 Step #1 - Plugin Vulnerabilities

By far the easiest way to take over a WordPress site would be to create a list of plugins
which the targeted site uses and then to look for critical vulnerabilities in each of these
plugins. There are over 50.000 free plugins WordPress administrators can install, many
of which are vulnerable to some sort of attack. For example, during our Advent
Calendar 2018, we demonstrated how even the most popular plugins with over 5 million
active installations contained severe issues.

This clearly demonstrated the danger that third-party plugins can pose to WordPress
sites. Considering that tools such as wpscan can effectively enumerate a list of all
plugins a target site uses, the first step of an attacker is to simply go through this list
and attempt to find such an unauthenticated vulnerability. In the context of this paper
we assume that all plugins on a targeted site are secure or the vulnerabilities require
some sort of user authentication.

4.2 Step #2 - Attacking WordPress Core via CSRF

When no vulnerable plugin is found an attacker would audit the WordPress core as
detailed in this paper. For example, he could exploit the CSRF vulnerability that leads to
persistent XSS (CVE-2019-9787) as discussed in Section 3.1. All the attacker needs to
do is to leave a harmless comment below a blog post that contains a link to an attacker
controlled website.

I liked your blog post and copied your content here: www.my-similar-blog.com

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 25

https://www.ripstech.com/php-security-calendar-2018/
https://www.ripstech.com/php-security-calendar-2018/
http://www.ripstech.com/

By default, all comments have to be moderated by an administrator. Since the
administrator needs to be authenticated for moderation, the likelihood of the
administrator being authenticated when he clicks on the malicious website link in the
moderated comment is very high. Once the administrator opens this website, the
attacker can then leverage the CSRF vulnerability and add a new comment to the
admin panel that triggers a Cross-Site Scripting payload. This JavaScript payload
rendered in the browser of the authenticated admin could, for example, trigger the
authenticated vulnerabilities described in the following to execute arbitrary code.

4.3 Step #3 - Exploiting Authenticated Vulnerabilities

Once an attacker succeeds in compromising an account on a targeted website, his next
steps depend on the privileges of the hijacked account. Per default there are five user
roles in WordPress: The subscriber, contributor, author, editor and administrator role.
Depending on their role, users can perform different actions.

● Subscribers can only read content.
● Contributors can create new blog posts, but can’t publish them by themselves. A

user with a higher user role must do it for them.
● Authors can publish their own posts and can upload media files.
● Editors can do the same as Authors, but can use arbitrary HTML tags, even

<script> tags within blog posts and comments.
● Administrators can do all of the above and can install new plugins and even edit

.php files of themes and plugins directly. This feature can be disabled for
hardening purposes.

The subscriber role is not likely to be used on WordPress sites as it is only a guest
account. The contributor role can’t upload files which would prevent an attacker who
compromised an account with this user role to exploit any of the discussed RCE
vulnerabilities since these depend on access to the file management system. However,
we published details about a 5th vulnerability in WordPress. This vulnerability is a
privilege escalation (CVE-2018-20152) that allows contributors to still execute arbitrary
code on most WordPress sites (technical details).

If the attacker can compromise an account with author or editor privileges, he can
exploit either one of the two previously described Remote Code Execution
vulnerabilities that depend on file upload access.

Finally, if the attacker can compromise an administrator account directly, he can abuse
a WordPress feature that enables administrators to directly edit the contents of .php

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 26

https://blog.ripstech.com/2018/wordpress-post-type-privilege-escalation/
http://www.ripstech.com/

files of installed plugins. This feature can be disabled and is expected to be a high value
target. The attacker can exploit the Remote Code Execution vulnerability from Section 2
or any of the other Remote Code Execution vulnerabilities in order to still gain full
access to the underlying web server.

However, although we layed out how an attacker can escalate from almost any user
role to Code Execution he needs to compromise an account on the target site first.
Although previous attacks of sophisticated groups have shown their effectiveness in
compromising accounts, it is still not always possible to do so. WordPress is a platform
that does not need a lot of administrative accounts. Typically, companies will create
only one or two administrator accounts and the employees managing those accounts
can be security-aware IT professionals that won’t get easily phished. What now?

4.4 Bonus: Wormable Stored XSS on WordPress.org

The WordPress.org website holds the plugin and theme repositories used by all
WordPress sites. Furthermore, it manages the accounts developers use to edit the
code of their themes and plugins. In May 2019, we have notified the WordPress
security team about a critical Stored XSS vulnerability on this website found by our
static code analysis solution. The vulnerability occurred when the plugin version
numbers from the repository are displayed.

The WordPress.org website is built using the WordPress CMS. The plugins as
presented in the plugin repository are merely posts of a dedicated post type that are
displayed with a special template. The listing below shows the code responsible for
displaying the version number.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 27

http://www.ripstech.com/

Here, get_post_meta() is the same function that interacts with the Post Meta
component of WordPress which as we have shown earlier can’t be trusted. Any user
could have created a new plugin and injected arbitrary JavaScript code into the plugin
version of his plugin. This JavaScript code would then be executed in the browser of
other plugin developers browsing the plugin repository. This would allow to add the
attacker as a commiter to other plugins in order to add a backdoor and to infect the
version number with the JavaScript payload as well, such that the payload would
spread like a worm amongst plugins.

4.5 Putting it all together

We now have demonstrated the ability for an attacker to 1) exploit a WordPress site
without any credentials if it has comments enabled, how he can 2) escalate from almost
any user role despite all hardening mechanisms being enabled to Remote Code
Execution and 3) how an attacker can as a last resort, if all previous vectors fail, can
hijack the accounts of plugin maintainers of plugins the site uses and insert backdoors
into the plugins.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 28

http://www.ripstech.com/

Summary

WordPress is the most popular application in the Web that runs on 34% of all websites.
Its code base is not more or less secure than any other web application. Contrarily, it is
arguably one of the most reviewed code bases by security experts, bug bounty hunters,
and community developers that search for security issues with different motives every
day.

Our research goal was to find out how difficult it is for malicious attackers to uncover
critical security vulnerabilities in a well-reviewed code base. As a result, we uncovered
four vulnerabilities with Remote Code Execution impact and documented our
methodology behind finding and exploiting them. We also discovered a Privilege
Escalation vulnerability that allows low privileged users to execute arbitrary PHP code
on many WordPress sites using a similar approach. All security issues were reported to
the vendor responsibly.

Although we could automate the task of detecting the core issues with the help of static
code analysis, finding a way for exploitation involved manual auditing to understand the
code functionalities. We introduced our audit methodology and believe that it can be
applied to all kinds of code assessments. In fact, we recently audited Adobe’s
ecommerce solution Magento with 2.2 million lines of code using the same approach
illustrated in this paper. As a result, we found and reported 6 critical security
vulnerabilities that lead to remote command execution and that are currently fixed by
the vendor.

We hope that this whitepaper also helps developers to look at their own source code
from an attackers perspective and to raise security awareness. As demonstrated, even
low-severe looking weaknesses and harmless features can be combined to
critical-impact vulnerabilities that should always be addressed.

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 29

http://www.ripstech.com/

References

https://blog.ripstech.com/2018/wordpress-file-delete-to-code-execution/

https://blog.ripstech.com/2018/wordpress-configuration-cheat-sheet/

https://blog.ripstech.com/2018/php-security-advent-calendar/

https://blog.ripstech.com/2018/wordpress-post-type-privilege-escalation/

https://blog.ripstech.com/2018/wordpress-org-stored-xss/

https://blog.ripstech.com/2019/wordpress-security-month/

https://blog.ripstech.com/2019/wordpress-image-remote-code-execution/

https://blog.ripstech.com/2019/wordpress-csrf-to-rce/

©2019 RIPS Technologies | Whitepaper | www.ripstech.com 30

https://blog.ripstech.com/2018/wordpress-file-delete-to-code-execution/
https://blog.ripstech.com/2018/wordpress-configuration-cheat-sheet/
https://blog.ripstech.com/2018/php-security-advent-calendar/
https://blog.ripstech.com/2018/wordpress-post-type-privilege-escalation/
https://blog.ripstech.com/2018/wordpress-org-stored-xss/
https://blog.ripstech.com/2019/wordpress-security-month/
https://blog.ripstech.com/2019/wordpress-image-remote-code-execution/
https://blog.ripstech.com/2019/wordpress-csrf-to-rce/
http://www.ripstech.com/

